แคลคูลัส
แคลคูลัส
เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เราขาคณิต และปัญหาทางฟิสิกส์
แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้
แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง
และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชั่นทางคณิตศาสตร์ ตัวอย่างเช่น การหา
ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง
บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์
แนวคิดที่สองคือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง
ๆ. ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ (หรืออินทิเกรด)
เป็นหลักในการคำนวณหาพื้นที่และปริมาตร
ทั้งสองแนวคิดที่กำเนิดจากปัญหาที่ต่างกันกลับมีความสัมพันธ์กันลึกซึ้ง
โดยทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า
แท้จริงแล้วทฤษฎีทั้งสองเปรียบเสมือนเป็นด้านทั้งสองของเหรียญอันเดียวกัน
นั่นคือเป็นสิ่งเดียวกันเพียงแต่มองคนละมุมเท่านั้น (โดยคร่าว ๆ
เรากล่าวได้ว่าอนุพันธ์และปริพันธ์เป็นฟังก์ชั่นผูกพันของกันและกัน).
ในการสอนแคลคูลัสเพื่อความเข้าใจตัวทฤษฎีอย่างลึกซึ้ง
ควรกล่าวถึงทั้งสองทฤษฎีและความสัมพันธ์นี้ก่อน
แต่การศึกษาในปัจจุบันมักจะกล่าวถึงแคลคูลัสเชิงอนุพันธ์ก่อนเพียงอย่างเดียว
เนื่องจากนำไปใช้งานได้ง่ายกว่า
อนึ่ง
การศึกษาแคลคูลัสอย่างละเอียดในเวลาต่อมา ได้ทำให้เกิดศาสตร์ใหม่ ๆ
ทางคณิตศาสตร์มากมาย เช่น คณิตวิเคราะห์ และ ทฤษฎีการวัด เป็นต้น
แคลคูลัสเชิงอนุพันธ์
อนุพันธ์ (derivative) คือการหาค่าความเปลี่ยนแปลงของตัวแปรหนึ่ง
เมื่ออีกตัวแปรหนึ่งเปลี่ยนแปลงในปริมาณที่น้อยมากๆ
บางทีอนุพันธ์ที่เราจะได้พบครั้งแรกในโรงเรียนคือ สูตร อัตราเร็ว = ระยะทาง/เวลา
สำหรับวัตถุที่เคลื่อนที่ด้วยอัตราเร็วคงที่
อัตราเร็วของคุณซึ่งเป็นอนุพันธ์ที่บอกการเปลี่ยนแปลงตำแหน่งในระยะเวลาหนึ่ง
วิชาแคลคูลัสพัฒนาขึ้น เพื่อจัดการกับปัญหาที่ซับซ้อนและเป็นธรรมชาติกว่านี้
ซึ่งอัตราเร็วของคุณอาจเปลี่ยนแปลงได้
เมื่อเรากล่าวถึงรายละเอียดแล้ว
แคลคูลัสเชิงอนุพันธ์ นิยามอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง (อนุพันธ์)
ระหว่างค่าของฟังก์ชั่น กับตัวแปรของฟังก์ชัน นิยามจริงๆ ของอนุพันธ์คือ
ลิมิตของอัตราส่วนในการเปลี่ยนแปลง (difference
quotient). อนุพันธ์คือหัวใจของวิทยาศาสตร์กายภาพ
กฎการเคลื่อนที่ของนิวตัน แรง = มวล×ความเร่ง มีความหมายในแคลคูลัส เพราะว่า
ความเร่งเป็นอนุพันธ์ค่าหนึ่ง ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวล
และทฤษฎีแรงโน้มถ่วงของไอน์สไตน์ (สัมพัทธภาพทั่วไป)
นั่นได้กล่าวถึงด้วยภาษาของแคลคูลัสเชิงอนุพันธ์
เช่นเดียวกันกับทฤษฎีพื้นฐานของวงจรไฟฟ้า
อนุพันธ์ของฟังก์ชัน
กล่าวถึงกราฟของฟังก์ชันนั้นในช่วงสั้น ๆ ซึ่งทำให้เราสามารถหาจุดสูงสุด และจุดต่ำสุด
ของฟังก์ชันได้ เพราะว่าที่จุดเหล่านั้นกราฟจะขนานกับแกนราบ ดิเฟอเรนเชียล
แคลคูลัสยังมีการประยุกต์ใช้อื่นๆอีก เช่น ระเบียบวิธีของนิวตัน (Newton's Method) ซึ่งเป็นวิธีในการหาค่ารากของฟังก์ชัน
โดยการประมาณค่าโดยเส้นสัมผัส ดังนั้นแคลคูลัสเชิงอนุพันธ์
จึงสามารถนำไปประยุกต์ใช้กับหลากหลายคำถาม ซึ่งถ้ามองแค่ผิวเผินอาจคิดว่า
ไม่อาจใช้แคลคูลัสจัดการได้
แคลคูลัสเชิงปริพันธ์
แคลคูลัสเชิงปริพันธ์ศึกษาวิธีการหาปริพันธ์ (อินทิกรัล, Integral) ของฟังก์ชัน ซึ่งอาจนิยามจากลิมิตของผลรวมของพจน์
(ซึ่งเรียกว่าลิมิตของผลรวมรีมันน์)
แต่ละพจน์นั้นคือพื้นที่ที่เป็นสี่เหลี่ยมผืนผ้าแต่ละแถบใต้กราฟของฟังก์ชัน
ทำให้การอินทิเกรตเป็นวิธีที่ได้ผลวิธีหนึ่งในการหาพื้นที่ใต้กราฟ และพื้นที่ผิว
และปริมาตรของแข็งเช่นทรงกลมและทรงกระบอกพื้นฐานของแคลคูลัส
พื้นฐานที่เคร่งครัดของแคลคูลัส มีฐานมาจาก
แนวคิดของฟังก์ชั่น และลิมิต มันรวมเทคนิคของพีชคณิตพื้นฐาน
และการอุปนัยเชิงคณิตศาสตร์ การศึกษาพื้นฐานของแคลคูลัสสมัยใหม่ รู้จักกันในชื่อ
การวิเคราะห์เชิงจริง ซึ่งประกอบด้วย นิยามที่เคร่งครัด
และบทพิสูจน์ของทฤษฎีของแคลคูลัส เช่นทฤษฎีการวัด
และการวิเคราะห์เชิงฟังก์ชั่นทฤษฎีบทมูลฐานของแคลคูลัส เบื้องต้น
ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า
การหาอนุพันธ์และการหาปริพันธ์เป็นวิธีการที่ตรงกันข้ามกัน กล่าวคือ
ถ้าเราสร้างฟังก์ชันที่เป็นปริพันธ์ของฟังก์ชันหนึ่งขี้นมา
อนุพันธ์ของฟังก์ชันที่เราสร้าง ก็จะเท่ากับฟังก์ชันนั้น นอกจากนี้
เรายังหาปริพันธ์จำกัดเขตได้ด้วยการกำหนดค่าให้กับปฏิยานุพันธ์
ทฤษฎีบทมูลฐานของแคลคูลัสเขียนในรูปสัญลักษณ์คณิตศาสตร์ได้ดังนี้: ถ้า f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง
[a, b] และ F
เป็นปฏิยานุพันธ์ของ f บนช่วง
[a, b] แล้ว
int_{a}^{b} f (x) ,dx = F (b) - F
(a) และสำหรับทุก x ในช่วง [a, b] จะได้ว่า frac{d}{dx}int_a^x f (t) , dt = f (x)
ความจริงข้อนี้ปรากฏแก่ทั้งนิวตัน
และไลบ์นิซ ซึ่งเป็นกุญแจนำไปสู่
การขยายผลลัพธ์เชิงวิเคราะห์อย่างมากมายหลังจากงานของทั้งสองเป็นที่รู้จัก.
ความเชื่อมโยงนี้ ทำให้เราสามารถย้อนความเปลี่ยนแปลงทั้งหมดในฟังก์ชันในช่วงหนึ่ง
จากอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง โดยการหาปริพันธ์ของส่วนหลัง.
ทฤษฎีบทมูลฐานนี้ยังให้วิธีในการคำนวณหา ปริพันธ์จำกัดเขต
ด้วยวิธีทางพีชคณิตเป็นจำนวนมาก โดยไม่ต้องใช้วิธีการหาลิมิต
ด้วยการหาปฎิยานุพันธ์ ทฤษฎีบทนี้ยังอนุญาตให้เราแก้สมการเชิงอนุพันธ์
ซึ่งคือสมการที่เกี่ยวข้องกันระหว่าง ฟังก์ชันที่ไม่ทราบค่า และอนุพันธ์ของมัน.
สมการเชิงอนุพันธ์นั้นมีอยู่ทั่วไปในวิทยาศาสตร์
การประยุกต์นำมาใช้
การพัฒนาและการใช้แคลคูลัสได้ขยายผลไปแทบทุกส่วนของการใช้ชีวิตในยุคใหม่
มันเป็นพื้นฐานของวิทยาศาสตร์เกือบทุกสาขาโดยเฉพาะ ฟิสิกส์
การพัฒนาสมัยใหม่เกือบทั้งหมด เช่น เทคนิคการก่อสร้าง การบิน และเทคโนโลยีอื่น ๆ
เกือบทั้งหมด มีพื้นฐานมาจากแคลคูลัส
แคลคูลัสได้ขยายไปสู่ สมการเชิงอนุพันธ์
แคลคูลัสเวกเตอร์ แคลคูลัสของการเปลี่ยนแปลง การวิเคราะห์เชิงซ้อน
แคลคูลัสเชิงเวลา แคลคูลัสกณิกนันต์ และ ทอพอโลยีเชิงอนุพันธ์
ไม่มีความคิดเห็น:
แสดงความคิดเห็น